Showing posts with label biosocial criminology. Show all posts
Showing posts with label biosocial criminology. Show all posts

Sunday, January 13, 2013

Monoamine Oxidase A Bibliography


Last updated: 1-16-2015

Bookmark this as a resource for research related to monoamine oxidase A (MAOA) or “the warrior gene.” New studies will appear as they become available. If a study is missing that belongs here, please email n00ffensebut@gmail.com. Also, be sure to read my own detailed analyses.


MAOA Allele Frequencies

  2R 2.5R 3R 3.5R 4R 5R 6R
All Raw 108 2 8769 173 11437 175 0
All % 0.5226% 0.0097% 42.4361% 0.8372% 55.3475% 0.8469% 0.0000%
White Raw 26 2 4618 164 8032 146 0
White % 0.2002% 0.0154% 35.5559% 1.2627% 61.8417% 1.1241% 0.0000%
Black Raw 46 0 542 3 448 9 0
Black % 4.3893% 0.0000% 51.7176% 0.2863% 42.7481% 0.8588% 0.0000%
Asian Raw 19 0 2433 1 1559 2 0
Asian % 0.4733% 0.0000% 60.6129% 0.0249% 38.8391% 0.0498% 0.0000%
Hispanic Raw 0 0 27 0 65 0 0
Hispanic % 0.0000% 0.0000% 29.3478% 0.0000% 70.6522% 0.0000% 0.0000%
Native Raw 0 0 220 1 354 2 0
Native % 0.0000% 0.0000% 38.1282% 0.1733% 61.3518% 0.3466% 0.0000%
Jewish Raw 2 0 96 0 54 2 0
Jewish % 1.2987% 0.0000% 62.3377% 0.0000% 35.0649% 1.2987% 0.0000%


MAOA Gene Biochemistry

Pintar et al. (2-1-1981). Gene for monoamine oxidase type A assigned to the human X chromosome. Journal of Neuroscience 1(2): 166-175.

Kochersperger et al. (1986). Assignment of genes for human monoamine oxidase A and B to the X chromosome. Journal of Neuroscience Research 16(4): 601-616.

Bach et al. (7-1-1988). cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proceedings of the National Academy of Sciences 85(13): 4934-4938.

Ozelius et al. (7-1988). Human monoamine oxidase (MAOA): chromosome position (Xp21-Xp11) and DNA polymorphism. Genomics 3(1): 53-58.

Black et al. (2-11-1991). Dinucleotide repeat polymorphism at the MAOA locus. Nucleic Acids Research 19(3): 689.

Grimsby et al. (5-1-1991). Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proceedings of the National Academy of Sciences 88(9): 3637-3641.

Chen et al. (8-25-1991). Structure of the human gene for monoamine oxidase type A. Nucleic Acids Research 19(16): 4537-4541.

Hinds et al. (7-1992). Characterization of a highly polymorphic region near the first exon of the human MAOA gene containing a GT dinucleotide and a novel VNTR motif. Genomics 13(3): 896-897.

Chen et al. (9-1992). Organization of the human monoamine oxidase genes and long-range physical mapping around them. Genomics 14(1): 75-82.

Zhu et al. (11-1-1992). Promoter organization and activity of human monoamine oxidase (MAO) A and B genes. Journal of Neuroscience 12(11): 4437-4446.

Shih et al. (1-1993). Structure and promoter organization of the human monoamine oxidase A and B genes. Journal of Psychiatry & Neuroscience 18(1): 25-32.

Shih et al. (1994). Identification of human monoamine oxidase (MAO) A and B gene promoters. Journal of Neural Transmission. Supplementum 41:27-33.

Denney et al. (9-1994). A new look at the promoter of the human monoamine oxidase A: gene mapping, transcription initiation sites, and capacity to drive luciferase expression. Journal of Neurochemistry 63(3): 843-856.

Denney et al. (1995). The promoter of the human monoamine oxidase A gene. Progress in Brain Research 106: 57-66.

Zhu et al. (10-1997). An extensive repeat structure down-regulates human monoamine oxidase A promoter activity independent of an initiator-like sequence. Journal of Neurochemistry 69(4): 1368-1373.

Sabol et al. (9-1998). A functional polymorphism in the monoamine oxidase A gene promoter. Human Genetics 103(3): 273-279.
- P1 promoter discovery
- Racial allele frequencies
- Large sample with no MAOA-2R

Benjamin et al. (2-2000). A novel expression based approach for assessing the inactivation status of human X-linked genes. European Journal of Human Genetics 8(2): 103-108.

Carrel and Willard. (3-17-2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434(): 400-404.
- Supplements: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Nordquist and Oreland. (9-22-2006). Monoallelic expression of MAOA in skin fibroblasts. Biochemical and Biophysical Research Communications 348(2): 763-767.

Serotonin

Tuinier and Verhoeven. (6-1995). Dimensional classification and behavioral pharmacology of personality disorders; a review and hypothesis. European Neuropsychopharmacology 5(2): 135-146.

MAOA Metabolites

Nielsen et al. (1-1994). Suicidality and 5-hydroxyindoleacetic acid concentration associated with a tryptophan hydroxylase polymorphism. Archives of General Psychiatry 51(1): 34-38.

MAOA Enzyme

Bond et al. (10-15-1977). Properties of monoamine oxidase (MAO) in human blood platelets, plasma, lymphocytes and granulocytes. Clinica Chimica Acta 80(2): 317-326.

Cawthon et al. (8-1981). Differences in the structure of A and B forms of human monoamine oxidase. Journal of Neurochemistry 37(2): 363-372.

Weyler et al. (1990). Biochemistry and genetics of monoamine oxidase. Pharmacology & Therapeutics 47(3): 391-417.

Ramsay et al. (1994). Kinetic properties of cloned human liver monoamine oxidase A. Journal of Neural Transmission. Supplementum 41: 17-26.

Fogel and Maslinski. (1994). The FAD dependent amine oxidases in relation to developmental state of enterocyte. Journal of Neural Transmission. Supplementum 41: 95-99.

Fernandes and Soares-da-Silva. (1994). Role of monoamine oxidase and cathecol-O-methyltransferase in the metabolism of renal dopamine. Journal of Neural Transmission. Supplementum 41:101-105.

Naoi et al. (1994). Novel toxins and Parkinson’s disease: N-methylation and oxidation as metabolic bioactivation of neurotoxin. Journal of Neural Transmission. Supplementum 41: 197-205.

Banchelli et al. (1994). Histaminase activity of mesenteric artery of the rat. Journal of Neural Transmission. Supplementum 41: 445-448.

Son et al. (4-15-2008). Structure of human monoamine oxidase A at 2.2-A resolution: The control of opening the entry for substrates/inhibitors. PNAS 105(15): 5739-5744.
- Supplement

Alia-Klein et al. (5-7-2008). Brain monoamine oxidase A activity predicts trait aggression. The Journal of Neuroscience 28(19): 5099-5104.
- Subset of Fowler et al sample
- Aggression as MPQ personality outcome

Meulendyke et al. (9-15-2014). Elevated brain monoamine oxidase activity in SIV- and HIV-associated neurological disease. Journal of Infectious Disease 210(6): 904-912.
- Supplement

MAOA mRNA

Grimsby et al. (10-1990). Tissue distribution of human monoamine oxidase A and B mRNA. The Journal of Neurochemistry 55(4): 1166-1169.

Norrie Disease

Lan et al. (5-1989). Human monoamine oxidase A and B genes map to Xp 11.23 and are deleted in a patient with Norrie disease. Genomics 4(4): 552-559.

Levy et al. (8-1989). Localization of human monoamine oxidase-A gene to Xp11.23-11.4 by in situ hybridization: implications for Norrie disease. Genomics 5(2): 368-370.

MAOA/B Deletion Syndrome

Whibley et al. (10-2010). Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. European Journal of Human Genetics 18(10): 1095-1099.


Saito et al. (2-13-2013). MAOA/B deletion syndrome in male siblings with severe developmental delay and sudden loss of muscle tonus. Brain & Development: Epub ahead of print.

Brunner Syndrome

Brunner et al. (10-22-1993). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133): 578-580.

Shih and Thompson. (9-1999). Monoamine oxidase in neuropsychiatry and behavior. American Journal of Human Genetics 65(3): 593-598.
- Review study
- Describes unpublished finding by Hwang and Shih that “urine analysis of 119 inmates from a prison in Taiwan showed no evidence for altered monoamine metabolism, suggesting MAO A deficiency.”

Nelson and Trainor. (7-2007). Neural mechanisms of aggression. Nature Reviews Neuroscience 8(7): 536-546.

Craig and Halton. (7-2009). Genetics of human aggressive behaviour. Human Genetics 126(1): 101-113.

Knockout Mice



MAOA-2R

Guo et al. (5-2008). The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: Associations and MAOA promoter activity. European Journal of Human Genetics 16(5): 626-634.

Guo et al. (8-2008). The integration of genetic propensities into social-control models of delinquency and violence among male youths. American Sociological Review 73(4): 543-568.
- Supplement

Beaver et al. (1-2013). Exploring the association between the 2-repeat allele of the MAOA gene promoter polymorphism and psychopathic personality traits, arrests, incarceration, and lifetime antisocial behavior. Personality and Individual Differences 54(2): 164-168.

Roettger et al. (2013). MAOA genotype and longitudinal delinquency among males in the United States: the moderating role of parental incarceration and parental closeness.
- National Longitudinal Study of Adolescent Health, Waves I and IV
- Mother and father incarceration and closeness to child as environmental factors
- Self-reported criminal delinquency outcome
- Positive main effect (b=0.114, P < 0.036)
- MAOA-2R interacts with father closeness such that closeness significantly decreases criminal delinquency in men with MAOA-2R (b=-0.086, P < 0.013)

Beaver et al. (9-2014). The 2-repeat allele of the MAOA gene confers an increased risk for shooting and stabbing behaviors. Psychiatric Quarterly 85(3): 257-265.

MAOA-3R

Manuck et al. (7-24-2000). A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Research 95(1): 9-23.


Garpenstrand et al. (1-2003). A regulatory monoamine oxidase A promoter polymorphism and personality traits. Neuropsychobiology 46(4): 190-193.


Williams et al. (3-2003). Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology 28(3): 533-541.
- Men with MAOA-3.5R or MAOA-4R averaged 17.70 ng/mL CSF 5-HIAA; men with MAOA-3R or MAOA-5R averaged 14.34 ng/mL
- “Similar effects were found in separate analyses for” white men and African-American men
- Negative finding for 5-HTTLPR epistasis (F=0.11, p=0.74)

Jacob et al. (9-2005). Cluster B personality disorders are associated with allelic variation of monoamine oxidase A activity. Neuropsychopharmacology 30(9): 1711-1718.


Rosenberg et al. (11-2006). The association of DNA sequence variation at the MAOA genetic locus with quantitative behavioural traits in normal males. Human Genetics 120(4): 447-459.
- Rare MAOA allele frequencies
- NEO personality outcome

Fowler et al. (8-15-2007). Evidence that brain MAO A activity does not correspond to MAO A genotype in healthy male subjects. Biological Psychiatry 62(4): 355-358.
- PET imaging
- Does not control for race

Yang et al. (11-2007). Association between monoamine oxidase A polymorphisms and anger-related personality traits in Korean women. Neuropsychobiology 56(1): 19-23.


De Neve and Fowler. (11-18-2009). The MAOA gene predicts credit card debt.
- National Longitudinal Study of Adolescent Health
- Positive main effect for credit card debt outcome

Fowler et al. (12-2009). Psychopathy trait scores in adolescents with childhood ADHD: the contribution of genotypes affecting MAOA, 5HTT and COMT activity. Psychiatric Genetics 19(6): 312-319.


Zhong et al. (12-31-2009). Monoamine Oxidase A gene (MAOA) associated with attitude towards longshot risks. PLOS One 4(12): e8516.
- Long-shot risk taking and insurance task outcomes
- MAOA-4R significantly associated with long-shot risk taking (p=0.006)

Gong et al. (9-2010). Association analysis between 12 genetic variants of ten genes and personality traits in a young Chinese Han population. Journal of Molecular Neuroscience 42(1): 120-126.
- Describes sample as being “324 females and 387 males,” but allele frequencies show 372 females and 293 males

Tikkanen et al. (2-28-2011). Psychopathy, PCL-R, and MAOA genotype as predictors of violent reconvictions. Psychiatry Research 185(3): 382-386.


Stetler et al. (7-16-2014). Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders. Journal of Psychiatric Research 58: 69-75.
- Supplement

Ficks and Waldman. (9-2014). Candidate genes for aggression and antisocial behavior: A meta-analysis of association studies of the 5HTTLPR and MAOA-uVNTR. Behavior Genetics 44(5): 427-44.
- Supplement

MAOA-3R Gene-Environment Interaction

Caspi et al. (8-2-2002). Role of genotype in the cycle of violence in maltreated children. Science 297(5582): 851-854.
- Supplement
- Aged 26
- Abuse during ages 3-11 as environmental factor
- Conduct disorder, violent convictions, antisocial personality disorder, and Multidimensional Personality Questionnaire outcomes
- Composite outcome index for males: beta=-0.36, t=2.53, P=0.01
- MAOA-3R and MAOA-2R were 12% of the male group but 44% of violent convictions, 11% attributable risk fraction
- Kim-Cohen meta-analysis equivalent: beta=0.29, 95% confidence interval 0.10-0.49, 17.4% weight
- Byrd and Manuck meta-analysis equivalent for males: P=0.0050
- Byrd and Manuck meta-analysis equivalent for females: P=0.1285

Huang et al. (5-19-2004). An association between a functional polymorphism in the monoamine oxidase A gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29(8): 1498-1505.
- MAOA-6R discovery - “Early abuse” as environmental factor
- Barratt Impulsivity Scale, Brown-Goodwin Aggression Scale, Buss-Durkee Hostility Inventory, major depressive disorder, bipolar disorder, and attempted suicide outcomes
- Positive for male impulsivity (F(1, 24)=4.60, p=0.042) and female suicide (chi-squared=6.543, df=1, p=0.011)

Foley et al. (7-2004). Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Archives of Psychiatry 61(7): 738-744.
- Aged 8-17
- Neglect, interparental violence, and inconsistent parental discipline as environmental factors
- Conduct disorder outcome
- Odds ratio 5.84, 95% confidence interval 0.44-77.97, p=0.09
- Negative finding incorrectly called “marginally significant”
- Kim-Cohen meta-analysis equivalent: beta=0.14, 95% confidence interval -0.05-0.34, 17% weight
- Byrd and Manuck meta-analysis equivalent: P=0.0200

Haberstick et al. (5-5-2005). Monoamine oxidase A (MAOA) and antisocial behaviorsin the presence of childhood and adolescent maltreatment. American Journal of Medical Genetics Part B 135B(1): 59-64.
- Supplement
- Average age 22
- National Longitudinal Study of Adolescent Health
- Childhood abuse and neglect and adolescent victimization as environmental factors
- Conduct disorder and violent convictions outcomes
- Negative finding, P=0.109
- Kim-Cohen meta-analysis equivalent: beta=0.14, 95% confidence interval -0.01-0.30, 28% weight
- Byrd and Manuck meta-analysis equivalent: P=0.1423

Nilsson et al. (1-15-2006). Role of monoamine oxidase A genotype and psychosocial factors in male adolescent criminal activity. Biological Psychiatry 59(2): 121-127.
- Aged 16 and 19
- Maltreatment or assault and multi-family household as environmental factors
- Stealing, vandalism, violence, and total crime outcomes by self-report
- Total criminality index: F=4.746, P=0.033, 1 degree of freedom
- Violence index: not significant
- Kim-Cohen meta-analysis equivalent: beta=0.51, 95% confidence interval 0.04-0.98, 3% weight
- Byrd and Manuck meta-analysis equivalent: P=0.0078

Meyer-Lindenberg et al. (4-18-2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. PNAS 103(16): 6269-6274.
- Supplements: 1, 2, 3, 4, 5, 6
- Commentaries: 1, 2
- angry and fearful face matching, aversive picture memory task, and inhibitory control flanker task as environmental factors
- Positive fMRI activation outcomes for face matching (p<0.05), memory task (men only) (F(3,258)=3.0, p=0.03), and flanker task (men only)

Young et al. (6-2006). Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: failure to confirm in adolescent patients. American Journal of Psychiatry 163(6): 1019-1025.
- Subjects selected for conduct and substance use problems without controls
- Aged 12-18
- Colorado Adolescent Rearing Inventory of abuse or neglect as environmental factor
- Conduct disorder severity outcome
- Negative finding

Huizinga et al. (10-1-2006). Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biological Psychiatry 60(7): 677-683.
- Abuse and violent victimization before age 17 as environmental factors
- Conduct disorder, violent crime, violence disposition index, and antisocial personality disorder index, and antisocial behavior composite index outcomes
- Negative finding (beta= -0.525, standard error=0.370, t/z=-1.419, P=0.157)
- Byrd and Manuck meta-analysis equivalent: P=0.7794

Widom and Brzustowicz. (10-1-2006). MAOA and the “cycle of violence:” Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biological Psychiatry 60(7): 684-689.
- Not controlled for gender
- Cohort study used abuse cases (56-58% of cohort) and matched controls
- Source of claim that MAOA only affects white people. “Given the differences in the allele frequencies in the white and non-white populations for the MAOA VNTR promoter polymorphism (observed in this study), as well as other polymorphisms within the MAOA gene and throughout the genome, it could be that there are substantially different frequencies of other MAOA modulating polymorphisms in white and non-white populations. This could lead to the situation where genotype at the promoter VNTR polymorphism is more highly correlated with expression levels in one population than the other. Thus, our failure to extend the findings of the protective effect of high MAOA expression to the non-white sample in this study could simply be a reflection of the inadequacy of the promoter VNTR polymorphism as a proxy for overall MAOA expression in non-whites.” “Non-whites” are not broken down by race. Whites with MAOA-3R were 24% female. Non-whites with MAOA-3R were 43% female.
- Nikulina et al supposedly used the same sample. However, that study claimed non-Hispanic whites were 60.8% instead of 62.9% despite no change in the sample size listed. That study listed blacks as constituting 35.1% of the total and Hispanics as constituting the remaining 4.1%. Widom and Brzustowicz also listed Native Americans, Pacific Islanders, and “others.”
- A subgroup of this study were previously studied by Widom (1989). That study was 67% white and 31% black. - White MAOA-2R allele frequency: 1.05%
- Non-white MAOA-2R allele frequency: 4.17%
- MAOA-2R, MAOA-3.5R, MAOA-5R, and heterozygous females excluded from analysis
- Abuse before age 12 as environmental factor
- Crime, self-reported violence, conduct disorder, antisocial personality disorder, juvenile violent and antisocial behavior index, and lifetime violent and antisocial behavior index outcomes
- Abuse was not associated with non-white juvenile (beta=0.08, standard error=0.11, t=1.19, P “not significant”) or lifetime violent and antisocial behavior index (beta=0.13, standard error=0.12, t=1.86, P=0.06)
- Positive for white juvenile violent and antisocial behavior index (beta=-0.16, standard error=15, t=-2.54, p < 0.01)
- Negative finding for non-whites (juvenile: beta=0.06, standard error=0.28, t=0.67, P “not significant”; lifetime: beta=-0.01, standard error=0.29, t=-0.14, P “not significant”) and blacks (data not provided)
- Byrd and Manuck meta-analysis equivalent: P=0.0143

Kim-Cohen et al. (10-2006). MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Molecular Psychiatry 11(10): 903-913.
- Also includes positive meta-analysis, using Caspi et al, Foley et al, Haberstick et al, Nilsson et al, and Kim-Cohen et al (beta=0.18, confidence interval 0.10-0.26, p < 0.001)
- Aged 7
- Abuse as environmental factor
- Antisocial behavior, emotional problems, and ADHD outcomes
- Significant opposite main effect for antisocial behavior (beta=0.19, t=2.34, p=0.019), ADHD (beta=0.18, t=2.23, p=0.026), and “composite mental health” (beta=0.19, t=2.40, p=0.017)
- Only positive for ADHD outcome (beta=-0.78, t=2.26, p=0.024) and “composite mental health” (beta=-0.84, t=2.09, p=0.037)
- Meta-analysis equivalent: beta=0.15, 95% confidence interval 0.01-0.28, 34.7% weight
- Byrd and Manuck meta-analysis equivalent: P=0.0145

Sjöberg et al. (3-5-2007). Adolescent girls and criminal activity: Role of MAOA-LPR genotype and psychosocial factors. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics) 144B(2): 159-164.
- Female subjects only
- Aged 16 and 19
- Multi-family house and sexual abuse as environmental factors
- Violence index, stealing index, vandalism index, and total criminality index outcomes
- MAOA-4R or MAOA-5R interact with sexual abuse to increase vandalism index (F=4.315, df=1, P=0.040) and total criminality index (F=2.732, df=1, P=0.036)
- Byrd and Manuck meta-analysis equivalent: P=0.9082

Eisenberger et al. (5-1-2007). Understanding genetic risk for aggression: Clues from the brain’s response to social exclusion. Biological Psychiatry 61(9): 1100-1108.
- Does not control for race
- Cyberball social exclusion task as environmental factor
- Spielberger Trait Anger scale and Brief Symptom Inventory for aggression and interpersonal hypersensitivity and fMRI dorsal anterior cingulated cortex activation outcomes
- Positive main effects for aggression (F(2,29)=3.68, p<0.05) and for interpersonal hypersensitivity (excluding heterozygotes) (t(19)=2.32, p<0.05)
- Positive interaction for dorsal anterior cingulated cortex activation outcome at 6,36,32 (F(2,28)=4.07, p<0.05)

Frazzetto et al. (5-2007). Early trauma and increased risk for physical aggression during adulthood: the moderating role of MAOA genotype. PLOS One 2(5): e486.
- Men and women assessed
- Included psychiatric admits
- Bandelow et al childhood traumatic life events questionnaire as environmental factor
- Aggression questionnaire outcome
- F = 7.04, p=0.009, 6.6% of variance explained

Oreland et al. (6-2007). Monoamine oxidases – activities, genotypes and the shaping of behaviour. Journal of Neural Transmission 114(6): 817-822.

Reif et al. (11-2007). Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology 32(11): 2375-2383.
- Childhood adverse environmental index as environmental factor
- Compared violent criminals to criminals without violent offenses
- Positive main effect (odds ratio = 2.3, 95% confidence interval 1.1-4.7, p=0.027)
- Positive epistasis with 5-HTTLPR with adverse environment (p<0.0001)

Vanyukov et al. (12-2007). The MAOA promoter polymorphism, disruptive behavior disorders, and early onset substance use disorder: Gene-environment interaction. Psychiatric Genetics 17(6): 323-332.
- Aged 10 to 19
- Child Assessment of Parental Involvement and Behavior scale as environmental factor
- Attention deficit hyperactivity disorder, conduct disorder, oppositional defiant disorder, and substance use disorder outcomes
- MAOA-4R interacts with father’s parental scale to decrease conduct disorder (odds ratio=0.380, 95% confidence interval: 0.179-0.805, P=0.011 for MAOA-4R alone) and increase ADHD (odds ratio=3.299, 95% confidence interval: 1.479-7.356, P=0.004 for MAOA-3R versus MAOA-4R and odds ratio=1.974, 95% confidence interval: 1.230-3.168, P=0.005 for MAOA-4R alone) - Byrd and Manuck meta-analysis equivalent: P=0.6517

Ducci et al. (3-2008). Interaction between a functional MAOA locus and childhood sexual abuse predicts alcoholism and antisocial personality disorder in adult women. Molecular Psychiatry 13(3): 334-347.
- Supplements: 1, 2
- All subjects have at least 25% Southwestern Native-American ancestry
- Also examined MAOA SNPs
- All 210 males excluded due to 90% having alcoholism and only 17% (of 126 asked) having experienced sexual abuse
- One subject with a rare allele was unaccounted for
- Sexual abuse before age 16 as environmental factor
- Antisocial personality disorder, antisocial personality disorder symptom count, and alcohol use disorder outcomes
- Positive main effect for antisocial personality disorder with alcohol use disorder (degrees of freedom=1, chi-squared=5.2, P=0.02), but not if sexually abused females were excluded
- MAOA-3R interacts with sexual abuse to increase antisocial personality disorder with alcohol use disorder (degrees of freedom=1, chi-squared=7.17, P=0.007)
- MAOA-3R interacts with sexual abuse to increase antisocial personality disorder symptom count (ANOVA: degrees of freedom=2, F=8.0, P=0.0006, regression model explained 22% of variance)
- Identified 5 MAOA haplotypes with haplotype B (the most common MAOA-3R-associated haplotype) interacting with sexual abuse to increase alcohol use disorder (degrees of freedom=1, chi-squared=10.57, P=0.002) and antisocial personality disorder with alcohol use disorder (degrees of freedom=1, chi-squared=16.12, P=0.00001)
- Byrd and Manuck meta-analysis equivalent: P=0.0002

Prichard et al. (3-5-2008). No evidence for interaction between MAOA and childhood adversity for antisocial behavior. American Journal of Medical Genetics B (Neuropsychiatric Genetics) 147B(2): 228-232.
- Adversity exposures as environmental factor using the following criteria: lack of affection, anxiety or emotional trouble, parental drug or alcohol use, family conflict, parental divorce or separation, neglect, authoritarian parenting, psychological abuse, witnessing physical or sexual abuse, physical abuse, sexual abuse, poverty
- Principle component factor as outcome using the following criteria: sex before age 15, leaving home before age 18, living with a partner before age 18, childbirth before age 18, smoking, past hazardous drinking, marijuana use before age 16, weekly or more marijuana use, frequent financial problems, less than 5 of secondary school education, unemployment, police problems or court appearance within last 6 months

Passamonti et al. (4-15-2008). Genetically dependent modulation of serotonergic inactivation in the human prefrontal cortex. NeuroImage 40(3): 1264-1273.
- Inhibitory control task as environmental factor
- Anterior cingulate cortex and orbitofrontal cortex BOLD fMRI imaging outcomes
- Non-significant MAOA effect for fMRI imaging of anterior cingulate cortex and orbitofrontal cortex
- Positive anterior cingulated cortex imaging outcome for MAOA x 5-HTTLPR epistasis

McDermott et al. (2-17-2009). Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. PNAS 106(7): 2118-2123.
- Supplement - College students, age unknown
- Does not control for race
- Amount of money taken from subject in game as environmental factor
- Simulated hot sauce administration to opponents game outcome
- Positive main effect (numbers not given)
- Positive gene-environment interaction (Z=1.85, P=0.032)

Weder et al. (3-1-2009). MAOA genotype, maltreatment, and aggressive behavior: the changing impact impact of genotype at varying levels of trauma. Biological Psychiatry 65(5): 417-424.
- Aged 5-15
- Does not control for gender
- Positive for total group and for African Americans and biracial as a separate group
- Total trauma exposure score (0 to 2) as environmental factor - Aggression as Achenbach Teacher’s Report outcome

Van der Vegt et al. (8-2009). High activity of monoamine oxidase A is associated with externalizing behaviour in maltreated and nonmaltreated adoptees. Psychiatric Genetics 19(4): 209-211.
- Does not control for race, but does for country of origin
- Race not identified

Hart and Marmorstein. (8-2009). Neighborhoods and genes and everything in between: Understanding adolescent aggression in social and biological contexts. Development and Psychopathology 21(3): 961-973.
-

Aslund et al. (3-2011). Maltreatment, MAOA, and delinquency: Sex differences in gene-environment interaction in a large population-based cohort of adolescents. Behavior Genetics 41(2): 262-272.
- Aged 17-18
- Survey of Adolescent Life in Vestmanland (SALVe-2006)
- Non-Scandinavian subjects not identified by race
- MAOA-5R lumped with MAOA-3.5R and MAOA-4R as MAOA-L
- Maltreatment summation index as environmental factor
- Vandalism, stealing, violence, and total delinquency indices outcomes
- Positive main effect of MAOA-3R (when not controlled for Scandinavian ethnicity) for total delinquency (degrees of freedom=2, F=3.78, P=0.023), stealing (degrees of freedom=2, F=5.40, P=0.005), and violence (degrees of freedom=2, F=4.68, P=0.009)
- Positive gene-environment interaction for total delinquency (degrees of freedom=2, F=14.56, P<0.001), vandalism (degrees of freedom=2, F=4.97, P=0.007), stealing (degrees of freedom=2, F=19.66, P<0.001), and violence (degrees of freedom=2, F=21.27, P<0.001)
- Positive gene-environment interaction in boys for total delinquency (degrees of freedom=3, chi-squared=57.21, P<0.001), vandalism (degrees of freedom=3, chi-squared =47.85, P<0.001), stealing (degrees of freedom=3, chi-squared =53.77, P<0.001), and violence (degrees of freedom=3, chi-squared=59.56, P<0.001)
- Positive gene-environment interaction in girls for total delinquency (degrees of freedom=5, chi-squared =115.71, P<0.001), vandalism (degrees of freedom=5, chi-squared =108.01, P<0.001), stealing (degrees of freedom=5, chi-squared =51.98, P<0.001), and violence (degrees of freedom=5, chi-squared=57.40, P<0.001)

Takahashi et al. (2-2011). Brain serotonin receptors and transporters: Initiation vs. termination of escalated aggression. Psychopharmacology 213(2-3): 183-212.

Kieling et al. (3-2013). Gene-environment interaction in externalizing problems among adolescents: evidence from the Pelotas 1993 Birth Cohort Study. The Journal of Child Psychology and Psychiatry: 54(3): 298-304.
- Aged 15
- Skin color controlled
- Pelotas 1993 Birth Cohort Study
- Childhood maltreatment before age 15 as environmental factor
- Negative finding for Strengths and Difficulties Questionnaire greater than 95% score for conduct disorder at age 15, P=0.823
- Conduct disorder scores declined from age 11 (2.5) to age 15 (2.3)

Kuepper et al. (3-13-2013). MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation. Behavioural Brain Research: epub ahead of print.
- Supplement
- Noise aversive stimuli as environmental factor for reactive aggression
- Competitive reaction time task (reactive aggression) and Freiburg Personality Inventory self-report general aggression scale outcomes
- Positive for high (F(2,234)=3.883, P < 0.05) and extreme (F(2,235)=8.166, P < 0.001) provocation effects on reactive aggression
- Not positive for gene interaction with gender

Ernst et al. (3-16-2013). Genetic variation in MAOA modulates prefrontal cortical regulation of approach-avoidance reactions. Neuropsychobiology 67(3): 168-180.


Haberstick et al. (5-28-2013). MAOA genotype, childhood maltreatment, and their interaction in the etiology of adult antisocial behaviors. Biological Psychiatry: epub ahead of print.
- Supplement - National Longitudinal Study of Adolescent Health Wave IV (excluded previous sample from Haberstick et al 2005)
- White MAOA-2R allele frequency: 0.298%
- Black MAOA-2R allele frequency: 4.79%
- Abuse before age 18 as environmental factor
- Childhood antisocial behavior, adult antisocial behavior, violent crime, Mini-International Personality Item Pool anger hostility scale, and composite antisocial index outcomes
- In black males , abuse was not associated with composite antisocial index (beta=0.15, standard error=0.16, t=0.96, 95% confidence interval -0.16 to 0.47), childhood antisocial behavior (beta=0.44, standard error=0.31, t=1.43, P=0.15), adult antisocial behavior (beta=0.20, standard error=0.17, t=1.19, P=0.24), violent crime (beta=0.01, standard error=0.05, t=0.23, P=0.82), or anger hostility scale (beta=0.12, standard error=0.43, t=0.28, P=0.78)
- Negative finding for composite antisocial index for white males (beta=-0.13, standard error=0.08, t=-1.67, 95% confidence interval -0.29 to 0.02, P=0.10) and black males (beta=-0.15, standard error=0.20, t=-0.76, 95% confidence interval -0.55 to 0.25, P=0.45)
- Positive main effect for anger hostility scale in white males (95% confidence interval 0.15-0.87, P=0.006)
- Positive main effect for violent crime in black males (95% confidence interval -0.11 to -0.02, P=0.006)

Byrd and Manuck. (6-17-2013). MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction. Biological Psychiatry: epub ahead of print.
- Used Caspi et al, Foley et al, Haberstick et al, Huizinga et al, Kim-Cohen et al, Nilsson et al, Widom and Brzustowicz, Frazzetto et al, Sjoberg et al, Vanyukov et al, Ducci et al, Hart and Marmorstein, Prom-Wormley et al, van der Vegt et al, Weder et al, Beach et al, Beaver et al, Derringer et al, Edwards et al, Enoch et al, Waleschlag et al, Aslund et al, Lee, Reti et al, Cicchetti et al, Fergusson et al, and McGrath et al
- Total sample size: > 18,400 for all 27 studies, 11,064 subjects in studies with men, 7588 subjects in studies with women
- Having MAOA-2R, MAOA-3R, or MAOA-5R with maltreatment as an environmental factor is significantly associated with male antisocial behavior (P=2 x 10-7, publication bias would require > 105 missing studies with 447 samples to explain away), male violent behavior (P=0.01), and male nonviolent antisocial behavior (P=4 x 10-4)
- Negative findings for MAOA=2R, MAOA-3R, or MAOA-5R with maltreatment as an environmental factor significantly affecting female antisocial behavior (P=0.77)
- Having MAOA-3.5R or MAOA-4R with childhood maltreatment as an environmental factor is significantly associated with female antisocial behavior (P=0.020)

Tiihonen et al. (10-28-2014). Genetic background of extreme violent behavior. Molecular Psychiatry: epub ahead of print.
- Supplement
- Allele frequencies of rare MAOA alleles are not given, but no copies of MAOA-2R are present
- Violent crime, extremely violent crime (each committing 10 or more crimes of murder, manslaughter, attempted homicide, or battery), and homicide (in replication cohort) outcomes
- Negative finding for HTR2B
- GWAS identified CDH13 SNP rs11649622
- Positive main effect for violent crime (P=2.93 x 10-5, odds ratio=1.708, 9% attributable risk fraction, 95% confidence interval: 4-15%) and extremely violent crime (P=1.6 x 10-4, odds ratio=2.662, 16% attributable risk fraction, 95% confidence interval: 8-24%)
- Positive main effect in men for violent crime (P=4 x 10-4, odds ratio=1.661, 95% confidence interval: 1.252-2.204) and extremely violent crime (P=4 x 10-4, odds ratio=2.617, 95% confidence interval: 1.540-4.445)
- Positive main effect in women for violent crime (P=0.0226, odds ratio=1.898, 95% confidence interval: 1.094-3.291) but not for extremely violent crime (P=0.2118, odds ratio=3.143, 95% confidence interval: 0.521-18.97)
- Negative with childhood maltreatment as an environmental factor (odds ratio=1.62)

MAOA-3R Gene-Hormone Interaction

Zhu et al. (12-1994). Bidirectional promoter of human monoamine oxidase A (MAO A) controlled by transcription factor Sp1. Journal of Neuroscience 14(12): 7393-7403.

Shih et al. (1995). Expression of human monoamine oxidase (MAO) A gene controlled by transcription factor Sp1. Progress in Brain Research 106: 49-56.

Sjöberg et al. (1-2008). A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology 33(): 425-430.
- Brown-Goodwin aggression scores and antisocial personality disorder outcomes

Romanuik et al. (9-24-2010). LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Medical Genomics 3(43): 1-19.

MAOA Epigenetics

Wong et al. (8-16-2010). A longitudinal study of epigenetic variation in twins. Epigenetics 5(6): 516-526.
- Male methylation lower, less variable, and more heritable than female methylation

Philibert et al. (7-2011). Gene environment interactions with a novel variable monoamine oxidase A transcriptional enhancer are associated with antisocial personality disorder. Biological Psychology 87: 366-371.
- Supplement
- P2 promoter discovery
- P2 9R allele had less methylation than 10R in women only (p < 0.03)
- Abuse as environmental factor
- Antisocial personality disorder outcome
- Only positive results were in women for environment interaction with P2 (beta=-0.229, p=0.007) and environmental interaction with P1 and P2 (r(96)=0.458, p < 0.001)

MAOA-3R Epistasis

Strous et al. (7-1-2003). Aggressive behavior in schizophrenia is associated with the low enzyme activity COMT polymorphism: A replication study. American Journal of Medical Genetics B (Neuropsychiatric Genetics) 120B(1): 29-34.
- Sample was 63% Sephardic Jew and 37% Ashkenazi Jew with allele frequencies: 1.3% MAOA-2R, 62.3% MAOA-3R, 35.1% MAOA-4R, 1.3% MAOA-5R
- Subjects selected for schizophrenia without controls
- Life History of Aggression Scale outcome
- MAOA-3R or MAOA-5R x COMT Met/Met x female gender positive interaction (F(2,105)=3.6, p=0.031)

Qian et al. (6-18-2009). Association study of intelligence of attention deficit hyperactivity disorder children in China. Beijing Da Xue Xue Bao 41(3): 285-290.

Qian et al. (5-2010). Gene-gene interaction between COMT and MAOA potentially predicts the intelligence of attention-deficit hyperactivity disorder boys in China. Behavior Genetics 40(3): 357-365.
- COMT Val/Val x MAOA-3R average IQ=106.7, 95% confidence interval 103.7-109.8; COMT Val/Val x MAOA-4R average IQ=98.0, 95% confidence interval 93.5-102.6

Kang et al. (7-2010). Association study between antipsychotic-induced restless legs syndrome and polymorphisms of monoamine oxidase genes in schizophrenia. Human Psychopharmacology 25(5): 397-403.
- Subjects selected for schizophrenia without controls
- International Restless Legs Syndrome Study Group rating scale outcome
- MAOA-3R x MAOB A644G SNP x gender interaction (F=4.05 & p=0.047 for men, F=5.00 & p=0.028 for women but in opposite direction)

MAOA Single-Nucleotide Polymorphisms

Balciuniene et al. (2-2001). The geographic distribution of monoamine oxidase haplotypes supports a bottleneck during the dispersion of modern humans from Africa. Journal of Molecular Evolution 52(2): 157-163.
- Haplotype frequency differences between Africans and non-Africans suggest a demographic bottleneck or positive selection.

Gilad et al. (1-22-2002). Evidence for positive selection and population structure at the human MAO-A gene. PNAS 99(2): 862-867.

Eccles et al. (5-2012). A unique demographic history exists for the MAO-A gene in Polynesians. Journal of Human Genetics 57(5): 294-300.
- Supplements: 1, 2, 3, 4
- Supplementary figure 1 (supplement 1) has mislabeled bar graphs

Tielbeek et al. (10-15-2012). Unraveling the genetic etiology of adult antisocial behavior: A genome-wide association study. PLOS One 7(10): e45086.
- Supplements: 1, 2, 3, 4, 5
- Genome-wide association study
- Aged 18-81
- Does not control for gender
- Antisocial personality disorder outcome
- No SNPs had genome-wide significance, including 7 MAOA SNPs.
- All 278,570 SNPs collectively explained 55% of variance

Redin et al. (11-2014). Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing. Journal of Medical Genetics 51(11): 724-736.
- Supplements: 1, 2


MAOA CA Repeat Polymorphisms

Vanyukov et al. (11-29-1995). A dinucleotide repeat polymorphism at the gene for monoamine oxidase A and measures of aggressiveness. Psychiatry Research 59(1-2): 35-41.
- Negative finding

MAOA Animal Models

Gibbons. (5-7-2004). Tracking the evolutionary history of a “warrior” gene. Science 304(5672): 818.
- Origin of “warrior gene” label

MAOA Research Criticism, Law, & “Ethics”

Baker et al. (Winter & Spring 2006). Behavioral genetics: The science of antisocial behavior. Law and Contemporary Problems 69(1-2): 7-46.

Kaplan. (Winter & Spring 2006). Misinformation, misrepresentation, and misuse of human behavioral genetics research. Law and Contemporary Problems 69(1-2): 47-80.

Garland and Frankel. (Winter & Spring 2006). Considering convergence: A policy dialogue about behavioral genetics, neuroscience, and law. Law and Contemporary Problems 69(1-2): 101-113.

Denno. (Winter & Spring 2006). Revisiting the legal link between genetics and crime. Law and Contemporary Problems 69(1-2): 209-257.

Kaye. (Winter & Spring 2006). Behavioral genetics research and criminal DNA databases. Law and Contemporary Problems 69(1-2): 259-299.

Beecher-Monas and Garcia-Rill. (Winter & Spring 2006). Genetic predictions of future dangerousness: Is there a blueprint for violence? Law and Contemporary Problems 69(1-2): 301-341.

Bernet et al. (11-2007). Bad nature, bad nurture, and testimony regarding MAOA and SLC6A4 genotyping at murder trials. Journal of Forensic Sciences 52(6): 1362-1371.

Hunter. (9-2010). The Psycho Gene. EMBO Reports 11(9): 667-669.
- Falsely claimed “Brunner’s syndrome … having only been identified in five males…”
- Falsely claimed “MAOA-L variant … occurs in about 40% of the population.”

Gillett & Tamatea. (2012). The warrior gene: Epigenetic considerations. New Genetics and Society 31(1): 41-53.

Related Research on Antisocial Personality Disorder & Aggression



MAOA, Depression, Bipolar Disorder, & Suicide

Craddock et al. (8-14-1995). No evidence for allelic association between bipolar disorder and monoamine oxidase A gene polymorphisms. American Journal of Medical Genetics 60(4): 322-324.

Lim et al. (8-14-1995). Evidence for a genetic association between alleles of monoamine oxidase A gene and bipolar affective disorder. American Journal of Medical Genetics 60(4): 325-331.

Muramatsu et al. (9-19-1997). Monoamine oxidase genes polymorphisms and mood disorder. American Journal of Medical Genetics 74(5):494-496.
- Depression and bipolar outcomes
- Negative findings for MAOA-CA, MAOA-VNTR (not P1 or P2), MAOA-RFLP, and MAOB-GT

Kunugi et al. (7-1999). A functional polymorphism in the promoter region of monoamine oxidase-A gene and mood disorders. Molecular Psychiatry 4(4): 393-395.
- MAOA-2R discovery
- Asian MAOA-2R allele frequency: 1.0%
- Depression, bipolar disorder, and suicide outcomes
- Negative finding (p=0.46)
- Fan et al depression meta-analysis equivalent: in men, odds ratio=1.26, 95% confidence interval 0.60-2.66; and in women, odds ratio=0.96, 95% confidence interval 0.62-1.49
- Fan et al bipolar disorder meta-analysis equivalent: in men, odds ratio=1.14, 95% confidence interval 0.60-2.14; and in women, odds ratio=1.08, 95% confidence interval 0.75-1.58

Furlong et al. (8-20-1999). Analysis of the monoamine oxidase A (MAOA) gene in bipolar affective disorder by association studies, meta-analyses, and sequencing of the promoter. American Journal of Medical Genetics (Neuropsychiatric Genetics) 88(4): 398-406.
- Bipolar disorder and depression outcomes
- Also includes a bipolar meta-analysis, using Craddock et al, Kawada et al, Nothen et al, Lim et al, Muramatsu et al, and Parsian and Todd
- Negative findings for MAOA-CA (for depression: chi-squared=3.349, 3 df, p=0.34; for bipolar disorder: chi-squared=0.317, 3df, p=0.96), MAOA-Fnu (for depression: chi-squared=0.821, 1 df, p=0.37; for bipolar disorder: chi-squared=0.004, 1 df, p=0.95), and MAOA-3R (for depression: chi-squared=0.958, 2 df, p=0.62; for bipolar disorder: chi-squared=0.082, 2 df, p=0.96)
- Positive meta-analysis for MAOA-CA in whites (odds ratio 1.55, 95% confidence interval 1.06-2.28, p < 0.02) and Japanese (odds ratio 2.65, 95% confidence interval 1.29-5.45)
- Positive meta-analysis for MAOA-Fnu only in white women (odds ratio 0.70, confidence interval 0.49-0.99)
- Fan et al depression meta-analysis equivalent: in men, odds ratio=0.72, 95% confidence interval 0.34-1.52; and in women, odds ratio=1.31, 95% confidence interval 0.85-2.02
- Fan et al bipolar disorder meta-analysis equivalent: in men, odds ratio=0.72, 95% confidence interval 0.35-1.50; and in women, odds ratio=1.05, 95% confidence interval 0.65-1.69

Ho et al. (2-7-2000). Genetic associations with clinical characteristics in bipolar affective disorder and recurrent unipolar depressive disorder. American Journal of Medical Genetics (Neuropsychiatric Genetics) 96(1): 36-42.
- Subjects selected for depression and bipolar disorder without controls
- Suicide outcome
- Positive for women (p=0.035)

Schulze et al. (12-2000). Association between a functional polymorphism in the monoamine oxidase A gene promoter and major depressive disorder. American Journal of Medical Genetics (Neuropsychiatric Genetics) 96(6): 801-803.
- Main effect of MAOA-3.5R, MAOA-4R, or MAOA-5R in women (p=0.029)
- Fan et al depression meta-analysis equivalent: in men, odds ratio=1.28, 95% confidence interval 0.45-3.61; and in women, odds ratio=1.37, 95% confidence interval 0.87-2.14

Ono et al. (4-8-2002). No evidence of an association between a functional monoamine oxidase A gene polymorphism and completed suicides. American Journal of Medical Genetics (Neuropsychiatric Genetics) 114(3): 340-342.
- Asian MAOA-2R allele frequency: 0.47%
- Negative finding (p=0.34)

Gutierrez et al. (12-2004). Association analysis between a functional polymorphism in the monoamine oxidase A gene promoter and severe mood disorders. Psychiatric Genetics 14(4): 203-208.
- Depression, bipolar disorder, suicide, psychosis, seasonal symptoms, Hamilton index, comorbidity, recurrence, episode number, episode length, psychiatric admissions, and family history of mental disorder outcomes
- Positive MAOA-3.5R/4R/5R link in bipolar women to longer psychiatric admission (F=4.604, p=0.037)
- Fan et al depression meta-analysis equivalent: in men, odds ratio=0.97, 95% confidence interval 0.51-1.84; and in women, odds ratio=1.01, 95% confidence interval 0.67-1.52
- Fan et al bipolar disorder meta-analysis equivalent: in men, odds ratio=1.35, 95% confidence interval 0.57-3.21; and in women, odds ratio=1.02, 95% confidence interval 0.59-1.76

Yu et al. (9-2005). Association study of a monoamine oxidase A gene promoter polymorphism with major depressive disorder and antidepressant response. Neuropsychopharmacology 30(9): 1719-1723.
- Sample sizes of control subjects by gender listed incorrectly
- Asian MAOA-2R allele frequency: 0.92%
- Major depressive disorder and Hamilton Depression Rating Scale outcomes
- Main effect of MAOA-4R for depression women (chi-squared=6.93, df=1, p=0.009), for men (chi-squared=6.27, df=1, p=0.015), and for both (chi-squared=12.48, p < 0.001)
- Main effect of MAOA-3R to improve the effect of 4-weeks of fluoxetine on Hamilton Depression Rating Scale in women (p=0.024)
- Fan et al depression meta-analysis equivalent: in men, odds ratio=2.07, 95% confidence interval 1.17-3.67; and in women, odds ratio=1.64, 95% confidence interval 1.13-2.37

Lin et al. (5-24-2008). Association analysis of monoamine oxidase A gene and bipolar affective disorder in Han Chinese. Behavioral and Brain Functions 4(21): 1-6.
- Unknown allele frequencies of MAOA-4R and MAOA-5R lumped together as the “long allele”
- MAOA-3R with MAOA-CA significantly not associated with bipolar disorder in women (odds ratio=1.22, 95% confidence interval: 0.41-3.67, p=0.72). For men, association is listed as significant with p=0.01 but 95% confidence interval of odds ratio includes null value (odds ratio=12.64, 95% confidence interval: 0.69-232.88)
- Fan et al bipolar meta-analysis equivalent: in men, odds ratio=0.61, 95% confidence interval 0.28-1.32; and in women, odds ratio=1.29, 95% confidence interval 0.71-2.33

Huang et al. (9-2008). Neither single-marker nor haplotype analyses support an association between monoamine oxidase A gene and bipolar disorder. European Archives of Psychiatry and Clinical Neuroscience 258(6): 350-356.
- Asian MAOA-2R allele frequency: 0.73%
- Negative finding (p=0.525)

Huang et al. (2009). Association of monoamine oxidase A (MAOA) polymorphisms and clinical subgroups of major depressive disorders in the Han Chinese population. World Journal of Biological Psychiatry 10(4 Part 2): 544-551.
- Outcomes were major depressive disorder, Hamilton depression rating scale (severe is > 24), and family history of first-degree relatives with depression or bipolar disorder
- Asian MAOA-2R allele frequency: 0.95%
- Only positive in women for linking MAOA-3R to severe depression (p=0.041) and for linking MAOA-EcoRV to depression (p=0.049), to depression with family history (p=0.047), and to severe depression (p=0.017)
- Fan et al depression meta-analysis equivalent: in men, odds ratio=1.23, 95% confidence interval 0.76-1.99; and in women, odds ratio=0.91, 95% confidence interval 0.64-1.28

Fan et al. (2-2010). Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders. Psychiatric Genetics 20(1): 1-7.
- Used Craddock et al, Lim et al, Muramatsu et al, Parsian and Todd, Sasaki et al, Furlong et al, Kunugi et al, Schulze et al, Preisig et al, Lin et al (2000), Syagailo et al, Tadic et al, Gutierrez et al, Yu et al, Huang et al (2007), Lin et al (2008), and Huang et al (2008)
- Only positive for major depressive disorder in Asians (odds ratio=1.23, 95% confidence interval 1.02-1.47, p=0.03) and Asian men (odds ratio=1.47, 95% confidence interval 1.06-2.05, p=0.02) with MAOA-3.5R, MAOA-4R, or MAOA-5R
- Only positive for bipolar disorder in whites with MAOA T941G SNP (odds ratio=1.28, 95% confidence interval 1.01-1.62, p=0.04) and MAOA-CA a6 (odds ratio=1.35, 95% confidence interval 1.11-1.64, p=0.002) alleles and in white women with MAOA T941G (odds ratio=1.36, 95% confidence interval 1.03-1.81) and MAOA-CA a5 (odds ratio=1.44, 95% confidence interval 1.04-1.99, p=0.03) and a6 (odds ratio=1.41, 95% confidence interval 1.12-1.78, p=0.004) alleles

Hung et al. (2-2012). Monoamine oxidase A gene polymorphism and suicide: An association study and meta-analysis. Journal of Affective Disorders 136(3): 643-649.
- Also includes negative suicide meta-analysis, using Ho et al, Ono et al, Huang et al, Courtet et al, Steiger et al, Lung et al, and Hung et al, for males (odds ratio=0.85, 95% confidence interval 0.67-1.10, p=0.22) and females (odds ratio=1.13, 95% confidence interval 0.94-1.36, p=0.21)
- Asian MAOA-2R allele frequency: 0.50%
- Negative finding (p=0.34)

Nikulina et al. (2-15-2012). Child abuse and neglect, MAOA, and mental health outcomes: a prospective examination. Biological Psychiatry 71(4): 350-357
- Supplement
- Same sample as Widom and Brzustowicz with additional racial data
- Does not control for gender
- Physical abuse, sexual abuse, and neglect before age 12 as environmental factors
- Depression, dysthymia, and alcohol abuse outcomes
- MAOA-4R interacted with physical abuse or with having experienced multiple forms of abuse (physical abuse, sexual abuse, or neglect) to affect dysthymia symptoms in women only
- MAOA-3R and MAOA-4R interacted with race and sexual abuse to affect depression, dysthymia, and alcohol abuse (beta=-0.19, P < 0.05 for depression, beta=-0.22, P < 0.05 for dysthymia, beta=-0.27, P < 0.01 for alcohol abuse). MAOA-3R decreased symptoms in sexually abused whites. MAOA-4R decreased symptoms in sexually abused non-whites. (Gender is not controlled, and racial groups differ in gender proportions with each allele. See Widom and Bruzstowicz, 2006)

Chen et al. (1-10-2013). The MAOA gene predicts happiness in women. Progressive in Neuro-Psychopharmacology & Biological Psychiatry 40: 122-125.

Melas et al. (3-2013). Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities. International Journal of Neuropsychopharmacology: epub ahead of print.
- Supplements: 1, 2, 3, 4, 5, 6
- Subjects were Swedish citizens but race is unidentified and not controlled. Of the 11% who are non-Swedish, most have “Nordic origin that is primarily Finnish.” (Source cited does not give this information.)
- Large sample with no MAOA-2R
- Prior to age 18, early parental death, parental divorce, financial problems, and other familial constraints as environmental factors
- Major Depression Inventory, mixed anxiety depression, dysthymia, and MAOA and NR3C1 methylation outcomes
- Main effect of MAOA-3R on depression in women (odds ratio=1.7, 95% confidence interval 1.2-2.4)
- Positive MAOA-3R x environment interaction for depression in women (Wald=16.4, df=5, p=0.006), in men (Wald=13.4, df=5, p=0.02), and both (Wald=26.8, df=5, p < 0.001)
- Positive association of epigenetic hypomethylation of MAOA with depression in women (p=0.001)
- Positive interaction of MAOA-3R x early parental death effect on NR3C1 hypermethylation (F=23.484, p < 0.001)

Ma et al. (7-2013). Association between MAOA-u VNTR polymorphism and its interaction with stressful life events and major depressive disorder in adolescents. Zhongguo Dang Dai Er Ke Za Zhi 15(7): 563-568.

MAO Inhibitors

Robinson et al. (10-5-1983). Plasma levels of catecholamines and dihydroxyphenylglycol during antidepressant drug treatment. Journal of Clinical Psychopharmacology 3(5): 282-287.

Whitaker-Azmitia et al. (10-1994). Effects of gestational exposure to monoamine oxidase inhibitors in rats: preliminary behavioral and neurochemical studies. Neuropsychopharmacology 11(2): 125-132.

Witkin et al. (4-4-2013). Further evaluation of the neuropharmacological determinants of the antidepressant-like effects of curcumin. CNS Neurological Disorders – Drug Targets: epub ahead of print.

MAOA & Panic Disorder



MAOA & Schizophrenia

Coron et al. (6-1-1996). Association study between schizophrenia and monoamine oxidase A and B DNA polymorphisms. Psychiatry Research 62(3): 221-226.
- Negative finding for MAOA EcoRV polymorphism

Syagailo et al. (3-8-2001). Association analysis of the functional monoamine oxidase A gene promoter polymorphism in psychiatric disorders. American Journal of Medical Genetics (Neuropsychiatric Genetics) 105(2): 168-171.
- Negative finding for depression (p=0.731), bipolar disorder (p=0.863), and schizophrenia (p=0.574)
- Fan et al depression meta-analysis equivalent: in men, odds ratio=0.68, 95% confidence interval 0.32-1.47; and in women, odds ratio=1.40, 95% confidence interval 0.79-2.49
- Fan et al bipolar disorder meta-analysis equivalent: in men, odds ratio=0.90, 95% confidence interval 0.43-1.87; and in women, odds ratio=1.03, 95% confidence interval 0.63-1.66

Norton et al. (7-8-2002). Schizophrenia and functional polymorphisms in the MAOA and COMT genes: No evidence for association or epistasis. American Journal of Medical Genetics (Neuropsychiatric Genetics) 114(5): 491-496.
- Negative finding for MAOA 941T>G SNP (p=0.55), MAOA-3R & MAOA-5R (p=0.68), and COMT epistasis (p=0.43)

Grant et al. (1-24-2013). Dopaminergic foundations of schizotypy as measured by the German version of the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)—a suitable endophenotype of schizophrenia. Frontiers in Human Neuroscience 7(1): epub ahead of print.
- Higher cognitive disorganization (p=0.046) and introvertive anhedonia (p=0.016) in men with MAOA-3R
- Nonsignificant epistasis with COMT for unusual experiences

MAOA, Substance Use, & Addiction

Vanyukov et al. (4-24-1995). Preliminary evidence for an association of a dinucleotide repeat polymorphism at the MAOA gene with early onset alcoholism/substance abuse. American Journal of Medical Genetics 60(2): 122-126.

Hsu et al. (9-1-1996). Association of monoamine oxidase A alleles with alcoholism among male Chinese in Taiwan. American Journal of Psychiatry 153(9): 1209-1211.

Fowler et al. (11-26-1996). Brain monoamine oxidase A inhibition in cigarette smokers. PNAS 93(24): 14065-14069.
- Smoking lowers brain MAOA enzyme levels 28%, half of the effect of brief tranylcypromine treatment
- PET imaging

Gade et al. (1-1998). Correlation of length of VNTR alleles at the X-linked MAOA gene and phenotypic effect in Tourette syndrome and drug abuse. Molecular Psychiatry 3(1): 50-60.

Rossing. (5-1998). Genetic influences on smoking: Candidate genes. Environmental Health Perspectives 106(5): 231-238.

Berlin et al. (10-15-2009). Reduced monoamine oxidase A activity in pregnant smokers and in their newborns. Biological Psychiatry 66(8): 728-733.
- MAOA activity of births from smoking pregnant women measured by umbilical artery metabolites correlate with newborn facial twitching and grimaces

MAOA, BMI, & Diabetes

Camarena et al. (2004). Family-based association study between the monoamine oxidase A gene and obesity: Implications for psychopharmacogenetic studies. Neuropsychobiology 49(3): 126-129.

Need et al. (5-2006). Obesity is associated with genetic variants that alter dopamine availability. Annals of Human Genetics 70(3): 293-303.

Fuemmeler et al. (2-2008). Genes implicated in serotonergic and dopaminergic functioning predict BMI categories. Obesity 16(2): 348-355.
- National Longitudinal Study of Adolescent Health
- Male odds ratio 1.85, 95% confidence interval 1.18-2.94, p=0.04

Elgzyri et al. (7-2012). First-degree relatives of type 2 diabetic patients have reduced expression of genes involved in fatty acid metabolism in skeletal muscle. Journal of Clinical Endocrinology and Metabolism 97(7): E1332.
- Supplement

MAOA Cancer Research



MAOA in Popular Non-Fiction

Walsh, Anthony. Race and Crime: A Biosocial Analysis. Nova Science Publishers, Inc., 1-1-2004.

Born to Rage?” National Geographic Explorer. National Geographic Channel. 12-14-2010.

Born to Rage?” Dr. Phil. 4-4-2011.
- Falsely claimed “It’s estimated that a third of all men carry what’s been called the warrior gene.”
- Falsely claimed “… in the old days MAO inhibitors were used as antidepressants.” They are still used.
- Claimed that “… the genes give you the loaded pistol, and the environment is what pulls the trigger. You need to have both of those things to have the gun shoot.” This neglects the main effects of MAOA-2R and Brunner syndrome.
- Falsely claimed “It is more rare in women, of course.”

Pinker, Steven. The Better Angels of Our Nature: Why Violence Has Declined. New York: Viking Adult, 10-4-2011.
- Falsely claimed that “the racial disparity in American homicide has not always been with us.”
- Falsely claimed that “an association between the gene and aggression has not been found in non-European populations…” based on Widom and Brzustowicz.
- Falsely claimed that 70 percent of the Maori carry the low-activity version of MAOA
- Repeated the copy-and-paste error from Lea and Chambers, saying “the low-activity version of the gene is even more common in Chinese men (77 percent of whom carry it)…”

“How Evil are You?” Curiosity. Discovery Channel. 10-30-2011.

The Warrior Gene?” Carte Blanche. M-Net. 10-7-2012.

Raine, Adrian. The Anatomy of Violence: The Biological Roots of Crime. Pantheon: New York, 4-30-2013.
- Falsely claimed that “[a]bout 30 percent of us have a variation in the MAOA gene that gives rise to relatively low levels of this enzyme…”
- Repeated the copy-and-paste error from Lea and Chambers, saying “[w]hile the base rate of the low-MAOA gene is about 34 percent in Caucasian males and 56 percent in the Maori, it is 77 percent in Chinese males.”
- Claimed that “It should be noted that the MAOA-antisocial relationship has not been found in all cultures. Shih and colleagues did not observe such a relationship with either antisocial personality disorder or antisocial alcoholism in participants from Taiwan…. Neither antisocial personality disorder nor antisocial alcoholism is associated with the MAO-A gene in Han Chinese males…. Furthermore, the interaction between abuse and low MAOA has not been found in African-Americans in one report: see Widom, C. S. & Brzustowicz, L. M. (2006).” Widom & Brzustowicz did not control for gender. Weder et al found the interaction in African Americans.

Sunday, December 30, 2012

Scientists Rediscover the Violence Gene, MAOA-2R



“It’s estimated that a third of all men carry what’s been called the warrior gene.”

— Dr. Phil

“There were three genes, as you mentioned. Call them violence genes. Call them bad-behavior genes. But what they found was that if people had these genes, they’re much more likely to be violent. There were certain triggers, as well: stress, family problems, low popularity, failing in school. To take it a step further, Karen, they sort of predict that about one percent of the population has these genes.”

— Dr. Sanjay Gupta, CNN

Both of these men are wrong, and both are referring to the same gene, monoamine oxidase A (MAOA). Roughly a third of white men inherit the 3-repeat allele of MAOA (MAOA-3R), which has received considerable research attention for influencing aggression. However, every other group, particularly African Americans, reach much higher allele frequencies, making MAOA-3R the most common version of the gene. Gupta was referring to a study of three potential violence-causing genes. One was the heterozygous pairing of ANKK1’s Taq1A allele (once thought to belong to DRD2), found in 37% of the subjects. Another was DAT1’s 10-repeat allele, found in 95% of the subjects. However, the strongest association with violence occurred in the third gene, MAOA, specifically the 2-repeat allele (MAOA-2R) found in that one percent that Gupta mentioned. I previously documented how this especially violent version of “the warrior gene” can be found much more commonly in African-American men than white or Asian men. Recently, an unusual study filled in some knowledge gaps about this highly understudied allele, specifically its effect on African-American men.

One unusual aspect of this study, Beaver et al, is that it essentially reexamined the exact same data as Guo et al, the study Gupta mentioned. The latter actually coincided with another study, also led by Guang Guo, on MAOA-2R in 2008 that determined that the allele doubles the rate of serious and violent delinquency. The impact most affected those aged twelve to fifteen, more than tripling the violent delinquency score based on eight questions. All three papers obtained their data from the National Longitudinal Study of Adolescent Health that totaled about 20,000 participants. However, only a seventh of that sample provided DNA, and Beaver et al focused on as few as eight black men for some of its findings.


That number might induce a healthy skepticism, but one should recall that this is not some newly discovered point mutation obtained in a “fishing expedition” bound for the annals of false positives. This gene produces an extremely important neurotransmitter enzyme that became the target of the first antidepressants in the 1950s. In the 1970s, studies linked its metabolites to aggression. In the late 80s, Hans Brunner discovered and became the eponym for a syndrome of violence resultant from complete deactivation of MAOA. His initial study included only five instances out of a family history of fourteen possible cases. Follow-up research increased the total subjects to nine from this single family. However, other researchers were able to induce Brunner syndrome in mice and eventually to discover such knockout-allele mice in a spontaneous form. Of course, a 2002 study instigated a tremendous amount of research on the gene-environment interaction, in which MAOA-3R coupled with the experience of child abuse triggers aggressive tendencies. The number of the “repeats” in the allele refers to the length of the more studied of the two promoters of the gene, and so those repeats can represent, to some extent, discrete levels of the enzyme’s dosage. In fact, the Guo et al 2008 study in the European Journal of Human Genetics included an in-vitro functional analysis of MAOA in human brain-tumor cells. MAOA-2R was less active than MAOA-3R, which was less active than MAOA-4R, the most common version in white people. MAOA-4R was more than three times as active as MAOA-2R.

I shall now briefly detail the sample characteristics that each of the three studies examined in order to ascertain how common MAOA-2R is in white and African-American men. Beaver et al claimed that the overall sample consisted of 2574 individuals, though Guo et al claimed a sample of 2524, including 1200 men. If Beaver et al was in error, then they have consistently repeated the error in other papers. In American Sociological Review, Guo et al only included 1111 men who met that study’s requirements, but both 2008 papers show that only eleven men had the 2R allele, and this study actually provided a racial breakdown of the sample: 60% white, 17% African American, 15% Hispanic American, and 8% Asian. The full genotyped Add Health male population is 57% white, which is 680 men. Beaver et al has listed 174 African-American men. Thus, nine black men by interviewer-assessed race (5.2%) or ten by self-reported race (5.5%) had the 2R allele. Beaver et al revealed that only 0.1% of white males had the 2R allele, which would equal just one man out of 680. That probably leaves none for Asians and Hispanics.

These numbers roughly correspond to other studies but suggest that I might have been too generous to African-American men in suggesting that they are only ten times more likely to have this especially dangerous version of MAOA. Reti et al previously genotyped a sample of 618 men and women who were 59% white and 38% African American. That study did not use a purely random sample. Seventy-five percent of that group received psychiatric evaluation within the Hopkins Epidemiology of Personality Disorders Study. That sample included 224 men and 391 women (with apparently three individuals missing possibly from rounding). Assuming both the black people and white people are 64% female, only three alleles out of 595 would have been 2-repeat alleles for white people. Eighteen of 377 would have been 2R for black people. Only about one white man out of possibly 133 would have been likely to have it, if even that, compared to four out of 85 black men. Likewise, Caspi et al in 2002 found one man with the 2R allele out of 499 white males. The trend seems to be that only a token white man in each study has this rare allele. Therefore, to say that the prevalence in whites is higher than Asians is sketchy. Since the new Beaver et al study uses a more random sample than Reti et al, and its white-male 2R prevalence is in closer agreement with Caspi et al than Reti et al, I suspect that this allele is closer to 50 times more common in black men than white men rather than 10 times, as I previously wrote.

Most research on MAOA compares MAOA-3R to MAOA-4R in white males with token instances of MAOA-2R thrown in with MAOA-3R under the label “MAOA-L.” So, these studies are made more shocking by the lumping of “the warrior gene,” MAOA-3R, together with the high-activity allele, MAOA-4R, as the non-violent versions of the gene. The astounding results speak for themselves. Beaver et al found that the ten black men who possessed MAOA-2R had triple the risk of incarceration and almost quadruple their risk of arrest, (accounting for 8.6% of the arrested and 9.5% of the incarcerated). A sample of only eight black men with MAOA-2R out of 130 black men had a statistically significant increased risk of self-reported violence. Scientists have tried to ameliorate the politically unpalatable nature of violence-gene research by emphasizing the environmental trigger for aggression with MAOA-3R, but the findings of Beaver et al and Guo et al did not depend on any environmental trigger. Beaver et al asserted that “the low base-rate of 2-repeat allele carriers prevented an exploration of gene-environment interaction…” However, Guo et al went right ahead and also tested for an interaction between MAOA-2R and being held back a grade in school and three questions regarding feelings of school attachment. The gene’s interaction increased violent delinquency 21 times as much as grade retention alone and seven times as much as school attachment alone.

Given that the men with MAOA-2R in the National Longitudinal Study of Adolescent Health are ten African Americans and one white, I doubt the effectiveness of the regression analysis adjustment for race and ethnicity claimed by Guo et al. Put another way, 91% of the exposed cohort come from a racial group that is 13% of all Americans. Their studies should have laid bare this fact. Beaver et al limited their analysis to the black men, but even that raises concerns of population stratification because African Americans are a mixed population, averaging 22% European ancestry. Africa, itself, has produced no MAOA research, (but it did copy a sensational National Geographic documentary on MAOA). If MAOA-2R is so closely associated with African ancestry, then it could serve as a proxy for having more African alleles. Of course, this logic never stopped any of the other research on African Americans, and the implication that multiple other African violence alleles confound this association does not fit the mold of politically correct impugnment usually directed at MAOA research.



Part of my fascination with the sparse research on MAOA-2R comes from my belief that scientists have inadvertently underplayed the true power of this gene. Comparing the two most common versions of MAOA requires less effort and funding, and emphasizing an environmental trigger, like child abuse, varnishes genetics research with a politically correct gloss. However, the trigger for MAOA-3R quickly multiplied to include testosterone levels, maternal smoking, IQ, education, and socio-economic status. Some of those “environmental” factors actually have a dominant hereditary influence. Now, studies have triggered aggression in MAOA-3R men with much more immediate experimental adversities in the form of game unfairness. Furthermore, people like Dr. Phil assume that a gene-environment interaction is synonymous with a “genetic predisposition,” but the “non-active” allele actually appears to play a protective role that negates an environmental trigger’s impact. For instance, low IQ does not increase violent tendencies in men with MAOA-4R, but it does in men with MAOA-3R.

Incidentally, Steven Pinker’s latest book addressed the Flynn Effect. “If smarter people and smarter societies are less likely to be violent, then perhaps the recent rise in intelligence can help explain the recent decline of violence.” However, a hypothesis of much longer-term IQ decline has recently ridden a wave of genetic-load angst, so allow me to point out the tension between these competing paradigms as a challenge to Pinker’s broader thesis. The complex associations between intelligence, executive function, and aggression might have also drawn in olfaction research. Both judgment and the ability to discern smells localize to the frontal lobes, and research has linked poor olfactory acuity to aggression. As with MAOA allele frequencies, racial disparities exist for odor identification.

Since Brunner syndrome and MAOA-2R seem to have a “main effect” without an environmental trigger, I see the MAOA-3R gene-environment interaction as a penumbra of the possible enzymatic effects. In an entire population, the prevalence of violence must have a specific total MAOA component that would consist of all of the MAOA variants (including potential epigenetic effects, SNPs, and both VNTR promoters, only one of which is the subject of most “warrior gene” research) and each variant’s potential when unlocked by all possible environmental triggers. Even with enormous samples, whole-genome studies are capable of studying a tiny fraction of this genetic potential. Similarly, quantitative genetics research, like twins studies, underestimates heritability when some large genetic effects are unlocked by environmental stimuli, as opposed to a merely additive nature-nurture relationship. Terrie Moffitt and Avshalom Caspi, who spearheaded early gene-environment research, wrote an extended analysis of this approach with Michael Rutter. “For understanding the influence of such conditional-effect genes, large samples may be less necessary than strategic [gene-environment interaction] research.”

Rather than use the penumbra of gene-environment interactions to appreciate the extensiveness of a gene’s effect, scientists like Moffitt, Caspi, and Rutter seek to dispel genetic “determinism.” Citing a two-hour student protest of a scientific conference on the genetics of violence, they explained, “Ethicists attribute the root of the public’s concern about genes to a pervasive belief in the power of genetic determinism: ‘ … genetic determinism implies that knowing a person’s genetic makeup is tantamount to knowing his or her future.’” If the public detests genetic determinism due to its unyielding quality, then surely such people would rather seek methods to circumnavigate genetic fate than to simply disacknowledge the power of heredity. However, Moffitt et al wish for the opposite: “Concrete data needed to counter genetic determinism are provided by new [gene-environment interaction] findings…. Such understanding should make eugenics and other misuses of genetic information much more difficult.” This discussion calls for a debate over both the feasibility and the ethics of changes to environmental triggers, like poverty, versus those of the ill-defined “misuses” of genetic knowledge. Presumably hypothetical therapeutic drugs and diagnostic tests for violent tendencies would not necessarily misuse the research, and the solutions to poverty and educational failure are not just around the corner.


Obviously, many scientists and activists who oppose genetic determinism believe in a greater role for nurture or even blank-slate nurture determinism, but they wish to leverage the masses, who ascribe behavior to supernatural “free will.” To qualify as deterministic, must genetic aggressivity present itself constantly? Though MAOA has no activity in Brunner syndrome, the subjects need not reside in cages, gnawing on the bars. Most men with the MAOA knockout allele are afflicted with conduct disorder and “conflict with the law” during their lifetime. A provocation of some sort might set off aggression, but minor provocations exist in the lives of all people, so Brunner syndrome should still qualify as deterministic. Whether the existence of such determinism is “nice” or not has no bearing on its existence, so do not mistake denial for virtue.

Wickedpedia

I might have missed the recent Beaver et al study, if others had not pointed it out to me. Unlike most MAOA research, it did not surface in the PubMed database. I think that is true of all studies from the Journal of Personality and Individual Differences of the London School of Differential Psychology. Some of the journal’s board members, including recently deceased Arthur Jensen, received the label “scientific racist” from certain activists. So, Kevin Beaver refused to submit to an interview for this blog, but he saw fit to publish in a journal that recently reviewed research on penis length and circumference differences among “Negroids,” “Caucasoids,” and “Mongoloids.” A year ago, I was able to send him a list of questions, in which I confronted him for conflating MAOA-2R and MAOA-3R as “MAOA-L.” He told me that a study on MAOA-2R was “in the pipeline.” However, I would like to think that I inspired the study, and I find it jarring that four years could pass without any research on MAOA-2R and violence.

Is anyone following this research as well as I am? Many professions fight “turf wars.” This occurs among medical professionals and physician specialties. Study of MAOA and violence likens less to competition over a lucrative procedure and more to a game of “hot potato.” Violence, itself, does not have a dedicated category in the Diagnostic and Statistical Manual of Mental Disorders. Though psychiatrists have contributed some research, it seems that psychologists and criminologists like Beaver have taken the lead usually with low-cost data mining from databases like the National Longitudinal Study of Adolescent Health.

Meanwhile, public attention to the gene increasingly falls to self-appointed experts and “ethicists,” who cannot even report some very basic facts about the gene correctly. Pseudointellectuals are claiming that “most if not all of this literature [on MAOA] is wrong, and [sic] will soon be forgotten” and that a “single molecule” like serotonin or dopamine cannot explain “complex behavior.” When Scientologists mouth these stupid ideas, most people roll their eyes, but now the same ideas are coming from “science reporters” and Harvard professors. Therefore, I decided to take the drastic measure of addressing what I think might be the source of the problem by editing Wikipedia. Before I started editing the Wikipedia pages for Brunner syndrome and MAOA, activists had peppered them with qualifications that the evidence was “flawed” or “controversial” or that the emerging field of epigenetics made the gene’s effects “hard to predict.” Apparently, methyl moieties escape the rule that a single type of molecule cannot determine a complex behavior. Never mind studies that show the epigenetics of MAOA in men is minimal, low in variance, and high in hereditary influence. Of course, it is never enough to simply edit a fix into a Wikipedia page. First, one makes the edit. Then, one reapplies the edit repeatedly after activists try to undo one’s work. Finally, one replies to the activist on one’s personal “talk” page when the activist threatens to undo one’s work again unless one attaches to an email the study that proves the activist’s sacred belief is based on a copy-and-paste error. A stronger commitment predicates some Wikipedia myths than that of many a marriage.

Some are rightfully criticizing this research and candidate-gene behavioral genetics, in general, because small sample sizes can cause false positives by measure of statistical significance. However, since no other approach is capable of studying VNTRs like MAOA, the only current solution would be to fund the research more rather than to advocate censorship of the research that is being done. Rarely do I hear similar criticism of functional magnetic resonance imaging (fMRI) research, which tends to have small samples due to the expense of the imaging but makes up for it with pretty color explosions on brain maps. When I worked with fMRI, I thought that the arbitrary threshold settings that defined the “areas of increased activity” added an extra layer of bias. Perhaps the Harvard establishment has singled out behavioral genetics for rebuke in order to centralize the potential for offensive findings and to avoid “misuse.”

Congratulations! You Have Cancer!

The study of MAOA has received a beautiful gift—the gift of cancer. One might recall the fad cureall and supplier of immortality known as antioxidants. Antioxidants are supposed to save cells by counteracting free radicals. However, too much of a good thing like cell survival is cancer. MAOA deserves to be called the “warrior gene” because it makes oxidases that slay cancer cells. Malorni et al first discovered this in 1998 when the MAOA-inhibiting drug, clorgyline, saved melanoma cells, in vitro. Ten years later, Alpini et al concluded that epigenetic effects on the MAOA VNTR could explain its lower enzyme levels in cholangiocarcinoma, cancer of the liver bile ducts. Now, Huang et al has determined that higher MAOA expression decreased the risk of metastasis and improved prognosis and survival in patients with cholangiocarcinoma. Though the decline in MAOA expression seemed mostly limited to the areas of malignancy, I have found some online family-member portrayals of men with the disease becoming “distant,” “difficult,” “angry,” “grumpy,” “horrible,” and “mean,” in some cases prior to diagnosis.


This calls for drugs that increase MAOA levels, and maybe the resulting therapies could metastasize to psychiatric uses. A few contestants already have records of accomplishment. Doctors sometimes use risperidone, an older-generation antipsychotic, to treat impulsive aggression. In fact, Tuinier et al detailed a case report of a Brunner syndrome patient who successfully responded for a time to risperidone. Nevertheless, the drug has serious adverse reactions, causing many patients to gain weight, and a small percentage develop permanent tardive dyskinesia, involuntary movements often of the lips. Tetrabenazine and ketanserin reduced aggression in MAOA-knockout mice. Tetrabenazine is used to treat chorea, the involuntary movements of Huntington’s disease. The FDA granted it official orphan-drug status in 2008, but it is incredibly expensive for Americans to use. Ketanserin has applications for high blood pressure, but it is unavailable in the US.

Maybe this cancer research could save MAOA from its “controversial” reputation. Harvard professors might hesitate to dismiss a violence gene that became a cancer gene. After all, lives are at stake.



ResearchBlogging.org






Alpini G, Invernizzi P, Gaudio E, Venter J, Kopriva S, Bernuzzi F, Onori P, Franchitto A, Coufal M, Frampton G, Alvaro D, Lee SP, Marzioni M, Benedetti A, & DeMorrow S (2008). Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Cancer research, 68 (22), 9184-93 PMID: 19010890

Beaver, K., Wright, J., Boutwell, B., Barnes, J., DeLisi, M., & Vaughn, M. (2013). Exploring the association between the 2-repeat allele of the MAOA gene promoter polymorphism and psychopathic personality traits, arrests, incarceration, and lifetime antisocial behavior Personality and Individual Differences, 54 (2), 164-168 DOI: 10.1016/j.paid.2012.08.014

Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC, Kuiper MA, Ropers HH, & van Oost BA (1993). X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. American journal of human genetics, 52 (6), 1032-9 PMID: 8503438

Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Müller U, Aguet M, Babinet C, & Shih JC (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science (New York, N.Y.), 268 (5218), 1763-6 PMID: 7792602

Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, & Poulton R (2002). Role of genotype in the cycle of violence in maltreated children. Science (New York, N.Y.), 297 (5582), 851-4 PMID: 12161658

Crabtree, G. (2013). Our fragile intellect. Part II Trends in Genetics, 29 (1), 3-5 DOI: 10.1016/j.tig.2012.10.003

Fergusson DM, Boden JM, Horwood LJ, Miller A, & Kennedy MA (2012). Moderating role of the MAOA genotype in antisocial behaviour. The British journal of psychiatry : the journal of mental science, 200 (2), 116-23 PMID: 22297589

Gallardo-Pujol D, Andrés-Pueyo A, & Maydeu-Olivares A (2012). MAOA genotype, social exclusion and aggression: an experimental test of a gene-environment interaction. Genes, brain, and behavior PMID: 23067570

Guo, G., Roettger, M., & Cai, T. (2008). The Integration of Genetic Propensities into Social-Control Models of Delinquency and Violence among Male Youths American Sociological Review, 73 (4), 543-568 DOI: 10.1177/000312240807300402

Guo, G., Ou, X., Roettger, M., & Shih, J. (2008). The VNTR 2 repeat in MAOA and delinquent behavior in adolescence and young adulthood: associations and MAOA promoter activity European Journal of Human Genetics, 16 (5), 626-634 DOI: 10.1038/sj.ejhg.5201999

Huang L, Frampton G, Rao A, Zhang KS, Chen W, Lai JM, Yin XY, Walker K, Culbreath B, Leyva-Illades D, Quinn M, McMillin M, Bradley M, Liang LJ, & DeMorrow S (2012). Monoamine oxidase A expression is suppressed in human cholangiocarcinoma via coordinated epigenetic and IL-6-driven events. Laboratory investigation; a journal of technical methods and pathology, 92 (10), 1451-60 PMID: 22906985

Jones, R., Brown, C., & Ship, J. (1995). Odor identification in young and elderly African-Americans and Caucasians Special Care in Dentistry, 15 (4), 138-143 DOI: 10.1111/j.1754-4505.1995.tb00501.x

Mahmut, M., & Stevenson, R. (2012). Olfactory Abilities and Psychopathy: Higher Psychopathy Scores Are Associated with Poorer Odor Discrimination and Identification Chemosensory Perception, 5 (3-4), 300-307 DOI: 10.1007/s12078-012-9135-7

Malorni W, Giammarioli AM, Matarrese P, Pietrangeli P, Agostinelli E, Ciaccio A, Grassilli E, & Mondovi B (1998). Protection against apoptosis by monoamine oxidase A inhibitors. FEBS letters, 426 (1), 155-9 PMID: 9598998

McDermott R, Tingley D, Cowden J, Frazzetto G, & Johnson DD (2009). Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proceedings of the National Academy of Sciences of the United States of America, 106 (7), 2118-23 PMID: 19168625

Moffitt, T., Caspi, A., & Rutter, M. (2006). Measured Gene-Environment Interactions in Psychopathology. Concepts, Research Strategies, and Implications for Research, Intervention, and Public Understanding of Genetics Perspectives on Psychological Science, 1 (1), 5-27 DOI: 10.1111/j.1745-6916.2006.00002.x

Murphy SM, Puwanant A, Griggs RC, & Consortium for Clinical Investigations of Neurological Channelopathies (CINCH) and Inherited Neuropathies Consortium (INC) Consortia of the Rare Disease Clinical Research Network (2012). Unintended effects of orphan product designation for rare neurological diseases. Annals of neurology, 72 (4), 481-90 PMID: 23109143

Pietrangeli, P. (2004). Amine Oxidases and Tumors NeuroToxicology, 25 (1-2), 317-324 DOI: 10.1016/S0161-813X(03)00109-8

Reti IM, Xu JZ, Yanofski J, McKibben J, Uhart M, Cheng YJ, Zandi P, Bienvenu OJ, Samuels J, Willour V, Kasch-Semenza L, Costa P, Bandeen-Roche K, Eaton WW, & Nestadt G (2011). Monoamine oxidase A regulates antisocial personality in whites with no history of physical abuse. Comprehensive psychiatry, 52 (2), 188-94 PMID: 21295226

Roush, W. (1995). Conflict marks crime conference Science, 269 (5232), 1808-1809 DOI: 10.1126/science.7569909

Scott, A., Bortolato, M., Chen, K., & Shih, J. (2008). Novel monoamine oxidase A knock out mice with human-like spontaneous mutation NeuroReport, 19 (7), 739-743 DOI: 10.1097/WNR.0b013e3282fd6e88

Shih JC, Ridd MJ, Chen K, Meehan WP, Kung MP, Seif I, & De Maeyer E (1999). Ketanserin and tetrabenazine abolish aggression in mice lacking monoamine oxidase A. Brain research, 835 (2), 104-12 PMID: 10415365

Sjöberg, R., Ducci, F., Barr, C., Newman, T., Dell'Osso, L., Virkkunen, M., & Goldman, D. (2007). A Non-Additive Interaction of a Functional MAO-A VNTR and Testosterone Predicts Antisocial Behavior Neuropsychopharmacology, 33 (2), 425-430 DOI: 10.1038/sj.npp.1301417

Tuinier S, Verhoeven WMA, Scherders MJWT, Fekkes D, & Pepplinkhuizen L (1995). Neuropsychiatric and biological characteristics of X-linked MAOA deficiency syndrome: A single-intervention case study. New Trends in Experimental and Clinical Psychiatry, 11 (4), 99-107

Wong CC, Caspi A, Williams B, Craig IW, Houts R, Ambler A, Moffitt TE, & Mill J (2010). A longitudinal study of epigenetic variation in twins. Epigenetics : official journal of the DNA Methylation Society, 5 (6), 516-26 PMID: 20505345